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Abstract

The efficacy of an active absorber based on the time-delayed displacement difference feedback in controlling friction-driven

vibrations is discussed. Mainly two types of absorbers are considered: the tuned absorber having the natural frequency same as

that of the primary system and the high-frequency absorber with the natural frequency higher than that of the primary system.

The local stability analysis clearly demonstrates that the static equilibrium can be locally stabilized by appropriately selecting

the control gain and the time-delay. The regions of stability are delineated in the plane of the control parameters. The

robustness analysis is performed to help select the control parameters for the best performance. A method of optimizing the

robustness of the system is presented. The influences of the absorber parameters on the degree of stability and the robustness

are discussed. Numerical simulations of the system demonstrate that proper choices of the control parameters can also attain

the global stability of the system. Numerical simulations reveal that apart from the globally stable static equilibrium or the

coexisting locally stable static equilibrium with the stationary limit cycle vibrations, unbounded motions are also possible for

some parameter values. Thus, care should be exercised in selecting the absorber parameters.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Friction-induced self-excited vibration is a common phenomenon in mechanical and electromechanical
systems. In most systems, friction-induced vibrations are highly undesirable. For example, self-excited vibration in
mechanical brakes causes noise related discomfort. Another example is the controlled positioning systems that
have now become an integral part of a large number of industrial production systems as well as consumer
electronics product. Friction often causes high level of positioning inaccuracies by inducing self-excited
oscillations around the desired position. Thus, it is not surprising that researchers have put serious efforts towards
understanding the phenomena and finding suitable means of controlling such unwanted oscillations.

Researchers have identified three major mechanisms of friction-driven oscillations. The most common
reason of friction-induced instability is attributed to the velocity-weakening characteristics of friction force,
which is also known as the Stribeck effect. Other widely studied mechanisms are mode-coupling and sprag-slip
instabilities. Elaborate and seminal reviews of the pervious research on this topic are found in [1,2].
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Literature on controlling friction-induced vibrations is vast. Various active and passive methods of
controlling friction-induced oscillations have been proposed in the literature [3–9]. Various methods including
dynamic vibration absorbers, linear and nonlinear control of the tangential and the normal forces and high-
frequency excitations etc. are discussed. In recent times, many researchers have investigated active control of
vibrations using time-delayed state (full or partial) feedback [10–13]. Atay [14,15], Maccari [16–18] and Li
et. al. [19] discuss the use of time-delayed state feedback method in controlling free, forced and parametric
vibrations of the Van der Pol oscillator. Studies on the use of time-delayed feedback in controlling friction-
induced instabilities and oscillations are rather limited. Elmer [20] proposes a method of controlling friction-
induced oscillations by normal load modulation based on the time-delayed state feedback. His method is
very similar to that proposed by Pyragas [21]. Das and Mallik [22] consider the time-delayed PD feedback
control of the forced vibration of a friction-driven system. Here, control force acts in the slipping direction.
Refs. [20,22] consider only the Stribeck type instability. Chatterjee [23] has discussed the time-delayed
feedback control of different types of friction-induced instabilities, namely (1) Stribeck instability governed by
velocity-weakening characteristics of friction force, (2) mode-coupling instability, and (3) sprag-slip instability.

In the present paper, the efficacy of a time-delayed absorber for controlling the self-excited vibration of
mechanical oscillator driven by the velocity-weakening friction force is studied. A spring supported mass on a
moving belt presents an archetypal model of the self-excited vibration under the velocity weakening friction
force. In practice, an inertial frame of reference is not always available for fixing the control actuator. Under
these circumstances, it is more convenient to attach the actuator in the form of an absorber to the primary
vibrating mass. Keeping this convenience in view, a spring supported absorber mass is attached to the primary
mass and an actuator is placed between the primary and the absorber mass. The time-delayed difference of the
displacement of the primary mass (similar to that proposed by Elmer [20], and Pyragas [21]) is utilized to
synthesize the control signal. This specific form of the controller can be very effective in stabilizing non-trivial
equilibrium present in the system under consideration and most importantly the control signal goes to zero
once the equilibrium is stabilized. This is not possible for an ordinary/time-delayed PD/PID feedback control.
A proof-mass actuator can physically realize such an absorber. In this context, it may be mentioned that Olgac
and co-workers [12] have developed an active absorber—the delayed resonator that uses time-delayed
feedback for controlling forced vibrations. A mathematical model of the controlled system is developed and
then the local stability of the equilibrium of the system is studied. Direct numerical simulations of the
mathematical model of the system substantiate the theoretical results.

2. Mathematical model

A physical model of the controlled system is depicted in Fig. 1. The primary system is modeled as a single
degree-of-freedom spring–mass system with the primary mass m1 suspended by a spring of stiffness K1 from a
fixed support and placed upon a belt that is moving with a constant velocity Vb(40). An absorber mass (m2) is
attached with the primary mass by a spring of stiffness K2. An actuator placed in-between the primary mass
Fig. 1. Mathematical model of the system.
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and the absorber mass supplies the control force (Fc). The control signal synthesized from the time-delayed
state of the system actuates the actuator. The primary mass is subject to the friction force (F) generated at the
belt-mass contact interface. X1 and X2 denote the displacements of the primary mass and the absorber mass,
respectively, at any instant of time measured from an inertial frame of reference (here, fixed).

Equation of motion of the resulting two degrees-of-freedom system reads as

m1 0

0 m2

" #
€X 1

€X 2

( )
þ

K1 þ K2 �K2

�K2 K2

" #
X 1

X 2

( )
¼

F ðV b � _X 1Þ

0

( )
þ

Fc

�F c

( )
, (1)

where the ‘overdot’ denotes differentiation with respect to time t.

The control force Fc is proportional to the time-delayed difference of the displacement of the primary mass as

Fc ¼ KcfX 1ðtÞ � X 1ðt� T�Þg, (2)

where Kc is the control gain and T* is the time-delay.
The friction force (F) between the primary mass and the belt is considered to follow a velocity-weakening

characteristic best illustrated in Fig. 2. Various functional forms have been proposed in the literature for
mathematically expressing this typical velocity dependence of the friction force. The polynomial
representation with up to third order term is mathematically more amenable and widely used in the
literature. However in the present paper, an exponential model of the velocity-weakening friction
characteristic as proposed by Hinrichs et al. [24] is used. The exponential model, in comparison to the
polynomial model, goes a long way in explaining the experimentally observed complex dynamics arising in
many friction-driven systems [25]. The exponential model of the friction force used here is expressed as

F ðvÞ ¼ c�vþN0ðmþ Dme�a�jvjÞ tanhðb�vÞ, (3)

where v is the relative sliding velocity and c* is the viscous component of the friction force. m is the minimum
kinetic friction coefficient and Dm is the difference between the static friction coefficient and the minimum
kinetic friction coefficient. N0 is the normal load and a* is a model parameter that determines the slope of the
friction–velocity curve in the low velocity range. tanh(b*v) is the continuous functional representation of
signum function with b�b1.

Eqs. (1)–(3) can be recast in the following non-dimensional form:
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;, (4)
Fig. 2. Typical velocity-weakening friction characteristic.
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The non-dimensional quantities are defined as

y1;2 ¼
X 1;2

x0
; v0 ¼

V b

onx0
; rm ¼

m2

m1
; oa ¼

ffiffiffiffiffi
K2

m2

q
on

,

where

x0 ¼
N0

m1o2
n

; on ¼

ffiffiffiffiffiffi
K1

m1

r
.

The ‘overdot’ denotes differentiation with respect to the non-dimensional time t ¼ ont.
Note that v0 is the non-dimensional belt velocity, rm is the ratio of the absorber mass to the primary mass,

and oa is the non-dimensional natural frequency of the absorber normalized with respect to the natural
frequency on of the primary system.

The non-dimensional control force fc is expressed as

f cðtÞ ¼ kcfy1ðtÞ � y1ðt� TÞg, (5)

where kc ¼ Kc=m1o2
n is the non-dimensional control gain and T ¼ onT� is the non-dimensional time-delay.

The non-dimensional form of the friction force f is given by

f ðv0 � _y1Þ ¼ cðv0 � _y1Þ þ ðmþ Dme�ajv0� _y1jÞ tanhfbðv0 � _y1Þg, (6)

where the non-dimensional friction model parameters are defined as

c ¼
c�

m1on

; a ¼ a�onx0; b ¼ b�onx0.

3. Local stability of the static equilibrium

3.1. Linearization around the equilibrium

In this section, the local stability of the equilibrium of the system is analyzed. Towards this end, a linearized
model of the system around the equilibrium is obtained based on the assumption that the system is vibrating near
the equilibrium position with the primary mass slipping on the belt. This is possible in case the magnitude of the
velocity of the primary mass is always less than the belt velocity, i.e. _y1ov0. Thus, the possibility of the reversal of
the direction of the relative velocity of sliding and hence the condition of the stick-slip vibration are precluded.

The equilibrium positions y1e and y2e of the primary and the absorber mass are obtained as (note that as b is
large and v0 is positive, tanh(bv0) is unity)

y1e ¼ y2e ¼ mþ Dme�av0 þ cv0. (7)

By using the coordinate transformations: z1 ¼ y1�y1e and z2 ¼ y2�y2e Eq. (4) is recast as

1 0

0 1

� �
€z1

€z2

( )
þ

1þ rmo2
a �rmo2

a

�o2
a o2

a

" #
z1

z2

( )
¼

gðea_z1 � 1Þ � c_z1

0

( )
þ

kcðz1 � z1ðt� TÞÞ

�
1

rm

kcðz1 � z1ðt� TÞÞ

8<
:

9=
;, (8)

where g ¼ Dme�av0 .
Note that the equilibrium of the system given by Eq. (8) is at the origin of the phase–space.
Expanding the nonlinear term (the first term in the RHS of Eq. (8)) of Eq. (8) in the Taylor series and

neglecting the higher order terms, one finally obtains the following linearized equation of motion:
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Evidently, the near-equilibrium friction force generates an effective negative damping quantified as
ce ¼ ga�c in Eq. (9). The self-excited oscillation of the uncontrolled system (kc ¼ 0) is possible only when ce



ARTICLE IN PRESS
S. Chatterjee, P. Mahata / Journal of Sound and Vibration 322 (2009) 39–59 43
assumes positive value leading to the Hopf instability of the equilibrium. It is interesting to note that the
uncontrolled system has two pairs of eigenvalues with positive real parts for any positive value of ce. It is
noteworthy that the static equilibrium of the uncontrolled system is stable for any negative value of ce. The
condition ce ¼ 0 implies the marginal stability of the equilibrium of the uncontrolled system.

3.2. Stability analysis

The Laplace transform of Eq. (9) yields the following characteristic equation:

PðsÞ þQðsÞe�sT ¼ 0, (10)

where s is a complex variable,

PðsÞ ¼ s4 � ces3 þ ks2 � o2
acesþ o2

a,

and Q(s) ¼ kcs
2, with k ¼ 1� kc þ o2

að1þ rmÞ.
The roots of the characteristic Eq. (10), determine the local stability of the equilibrium. Even though

Eq. (10) has infinitely many roots due to its transcendental nature, only the sign of the maximum value of the
real part amongst all these roots ascertains the stability of the equilibrium. If the maximum real part is
negative, the equilibrium of the original nonlinear system (Eq. (8)) is locally asymptotically stable. It is
mentioned elsewhere that the uncontrolled system has two pairs of complex eigenvalues with positive real
parts. On a switching boundary, one pair of roots becomes purely imaginary before migrating from the RHS
s-plane to the LHS s-plane or the vice-versa. Thus substituting s ¼ jo into Eq. (10) and separating the real and
imaginary parts, one obtains the following two equations:

kco2 cos oT ¼ o4 � ko2 þ o2
a (11)

and

kco2 sin oT ¼ �ceo3 þ o2
aceo. (12)

Squaring and adding Eqs. (11) and (12), yields the following polynomial equation in o:

o8 þ a1o6 þ a2o4 þ a3o2 þ o2
a ¼ 0, (13)

where

a1 ¼ c2e � 2k,

a2 ¼ 2o2
a þ k2

� 2o2
ac2e � k2

c ,

a3 ¼ o4
ac2e � 2ko2

a.

Positive (or trivial) real roots (oc) of Eq. (13) define the switching boundary. The corresponding critical
values of the time-delay Tc are obtained by dividing Eq. (12) by Eq. (11) as

Tc ¼
1

oc

tan�1
�ceo3

c þ o2
aceoc

o4
c � ko2

c þ o2
a

� �
þ 2ip

� �
8i ¼ 0; 1; 2 . . .1. (14)

The velocity with which a pair of complex conjugate eigenvalues crosses the stability boundary at (oc, Tc) is
computed as

V ðoc;TcÞ ¼ Re
ds

dT

				
joc ;Tc

" #
, (15)

where ds=dT ¼ ðkcs3e�sT Þ=ð4s3 � 3ces
2 þ 2ks� o2

aceÞ � ðkcs2T � 2kcsÞe�sT Þ.
The sign of the velocity of crossing V (oc, Tc) is defined as R (oc, Tc). The quantity R (oc, Tc) implies

whether the crossing is taking place from the RHS s-plane to the LHS s-plane or the vice-versa. Ro0 implies
the crossing of a pair of complex conjugate eigenvalues from the RHS to the LHS of the s-plane. In a stable
region, the total number of roots with positive real parts must be zero.
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Using Eqs. (13)–(15), the local stability boundaries can be computed for any value of ce. However, the
switching boundaries and hence the stability boundary can be easily obtained for ce ¼ 0. Substituting ce ¼ 0
into Eq. (12), yields

o ¼
np
T
; n ¼ 1; 2 . . . . . .1, (16)

Substituting (16) into Eq. (11), one obtains the switching boundaries in the kc–T plane as

o2
aT4 � fk þ ð�1Þnkcgn

2p2T2 þ n4p4 ¼ 0; n ¼ 1; 2 . . . . . .1 (17)

Clearly, kc ¼ 0 is also a switching boundary.
The first important step before carrying out the stability analysis is to design the absorber, i.e., to select the

absorber frequency oa and the mass ratio rm. It is well known that the absorber frequency should be tuned to
the frequency of vibration for effectively controlling forced resonant vibrations using dynamic vibration
absorbers. However, no such strong theory exists in case of self-excited vibrations. The absorber frequency
used in [4,8] is slightly less than the frequency of self-excitation that is also almost equal to the natural
frequency of the primary system. In the present paper, the absorber frequency is chosen in the following
two ranges:
1.
 Near the natural frequency of the primary system (here unity): Tuned absorber.

2.
 Near o2

a ¼ 10: High-frequency absorber.
It is established in [4,8] that a higher mass ratio yields better performance. However, a high mass ratio is often
not practically feasible. In the present paper, values of the mass ratio are selected less than unity. In what
follows, characteristics of the local stability of the equilibrium for the tuned and the high-frequency absorbers
are separately discussed.

3.2.1. Stability with tuned absorber

The region of stability in the plane of control gain vs. time-delay can be obtained from Eqs. (13)–(15) for
different positive values of ce. However, an a priori knowledge regarding the locations of the stability regions
in the plane of the controlled parameters for ce ¼ 0 (the marginally stable uncontrolled system) renders the
numerical computations more efficient. Fortunately, Eq. (17) is helpful in quickly identifying the stability
zones for ce ¼ 0. The stability boundaries for ce ¼ 0 are delineated in Fig. 3 for different values of rm. From
Fig. 3 it is observed that there are two distinct regions of stability: the first region is located near T ¼ p and the
second region is near T ¼ 2p. The first region grows and the second region shrinks in size, respectively, with
the increasing value of the mass ratio.

The regions of stability for different positive values of ce and rm are delineated in Figs. 4 and 5 and
compared with that obtained for ce ¼ 0. From Fig. 4 it is inferred that the region of stability shrinks in size
with the increasing value of ce and eventually disappears beyond a critical value of ce. From Fig. 5 it is
apparent that with the increasing value of the mass ratio, the region of stability around T ¼ 2p gradually
shrinks and then disappears, whereas the region of stability around T ¼ p appears after a critical value of the
mass ratio and subsequently grows in size.

3.2.2. Stability with high-frequency absorber

Fig. 6 clearly demonstrates that with the increasing value of the absorber frequency, the stability region
gradually shifts towards the higher positive gain and the smaller time-delay region. The stable range of the
control gain increases, whereas the stable range of the time-delay decreases with the increasing value of the
absorber frequency. In absence of any rigorous guidelines, the absorber frequency may be selected based on
practical considerations. For example, if the first mode of vibration is of interest, the absorber frequency
should be so selected that the absorber does not interact with the second mode of vibration of the primary
system. One should also note that a very high gain and small time-delay controller is costly, if not practically
infeasible. In what follows, the stability characteristics of the static equilibrium system with the high-frequency
absorber are discussed for o2

a ¼ 10.
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Fig. 3. Regions of stability in the plane of control parameters: ce ¼ 0 and oa ¼ 1.0. Black regions imply stability.

Fig. 4. Regions of stability near T ¼ 2p: rm ¼ 0.1 and oa ¼ 1.0.
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Fig. 7 shows the stability boundaries in the control gain vs. time-delay plane for different values of the
effective damping ce. The stability boundaries are compared with that with the marginally stable uncontrolled
system corresponding to the case ce ¼ 0. Evidently, a stable region of operation exists for a wide range of the
control parameters kc and T. The lower threshold of the control gain for the stable operation increases with
the increasing value of the effective damping of the primary system (ce), whereas the upper threshold value is
only marginally influence by ce. Even though the stability of the equilibrium can be achieved for some smaller
values of ce, the proposed control strategy fails beyond a crtical value of ce.

The effects of the mass ratio on the location of the stability region in the plane of control parameters is
illustrated in Fig. 8a, which clearly demonstartes that the region of stability moves towards the zone of higher
gain and smaller time-delay with the increasing value of the mass ratio. It is already evident from Fig. 6 that
the effect of the increasing value of the absorber frequency is also the same. However, the high-frequency
absorber with a very high mass ratio has two regions of stability: one below T ¼ p/2 and the other below
T ¼ p, as shown in Fig. 8b.
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Fig. 5. Variations of the stability regions with rm. static equilibrium is locally stable inside the dashed curves: ce ¼ 0.1.

Fig. 6. Variations of the stability regions with the frequency of the absorber: rm ¼ 0.1 and ce ¼ 0.1.
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4. Robustness analysis

The stability analysis presented in the previous section reveals that the exact location and the extent of the
region of stability in the plane of the control parameters is sensitive to the value of the effective, negative
damping parameter ce. However in practice, an accurate estimation of the parameter ce is never possible. Thus,
it is pertinent to estimate the bound on the pertubation of the parameter ce that the controlled system can
tolerate without loosing its stability. The minimum pertubation of the parameter ce that the system can put up
with is the measure of the robustness of the control. In principle, the control and the design paramters should
be appropriately selected to maximize the robustness. The basic philosophy of estimating the robustness is
briefly outlined below.

A negatively damped mechanical oscillator mathematically represents the near-equilibrium dynamics of the
uncontrolled system. The control force stabilizes the equilibrium by converting the overall damping of the
system to a positive value. Now the stable control system is brought to the verge of instability by perturbing
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Fig. 7. Stability regions of the controlled system with the high-frequency absorber: o2
a ¼ 10 and rm ¼ 0.1.

Fig. 8. Stability plots with the high-frequency absorber for different values of mass ratio: (a) o2
a ¼ 10, ce ¼ 0.2 and (b) rm ¼ 0.75, o2

a ¼ 10,

ce ¼ 0.1.
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the effective damping of the original uncontrolled system by an amount, say p. Then p is the measure of the
robustness of the controlled system. In what follows, the dependence of the quantity p on the control
parameters and the corresponding optimum characteristics of the same are discussed.

Let p be the perturbation of the effective damping ce that just destabilizes the control system, which is
already stabilized by the feedback. This yields the following characteristic equation:

PðsÞ þQðsÞe�sT ¼ 0, (18)

where s is a complex variable,

PðsÞ ¼ s4 � ðce þ pÞs3 þ ks2 � o2
aðce þ pÞsþ o2

a,

and Q(s) ¼ kcs
2, with k ¼ 1� kc þ o2

að1þ rmÞ.
It may be noted that p can be of any sign: positive or negative. However, the positive value of p is of greater

significance because the uncontrolled system is unstable for positive values of ce.
Substituting s ¼ jo into Eq. (18) and separating the real and imaginary parts, yields

p ¼ �ce þ
kco2 sin oT

o2
ao� o3

¼ hðo;TÞ, (19)
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and

cos oT ¼
o4 � ko2 þ o2

a

kco2
¼ f ðoÞ. (20)

Eq. (20) may have multiple real positive roots of o that produce multiple values of p. Under these
circumstances, the positive (pp) and the negative (pn) perturbation bounds on ce can be computed according to
the following pseudo code:
if min(p)40
pp ¼ min(p);
pn ¼ NaN;

else
pp ¼ max(p);
pn ¼ min(p);

end
4.1. Robustness with tuned absorbers

It is discussed elsewhere that the controlled system with a tuned absorber has the two regions of the stability
depending upon the value of the mass ratio. Thus, the robustness analyses are performed separately for these
two regions.

Case I: The stability region near T ¼ 2p for smaller values of rm.
The variations of the perturbation bound (positive) with the time-delay for different values of the control

gain are plotted in Fig. 9a. Similar variations for different values of the mass ratio are shown in Fig. 9b. It is
Fig. 9. Variations of positive perturbation bound with T: (a) for different gains, ce ¼ 0.1, oa ¼ 1, rm ¼ 0.1; (b) for different mass ratios,

ce ¼ 0.1, oa ¼ 1, kc ¼ �0.2; and (c) optimum robustness curve, ce ¼ 0.1, oa ¼ 1, rm ¼ 0.1.
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apparent from the above figures that with all other parameters remaining fixed, the robustness has the
maximum value for a particular value of the time-delay, called the optimum time-delay. Within the particular
region of stability, the maximum value of the robustness clearly increases with the increasing value of the gain
and decreases with the increasing value of the mass ratio.

In order to estimate the optimum time-delay, one maximizes the quantity p with respect to the time-delay T.
Towards this end, one writes

dp

dT
¼

qh

qT
þ

qh

qo
do
dT
¼ 0. (21)

From Eq. (20), one obtains

do
dT
¼ �

o sin oT

T sin oT þ
df

do

. (22)

Substituting (22) into (21) and using (20), yields the following fifth order polynomial equation in o2:

X5
i¼0

cio2i ¼ 0, (23)

where c5 ¼ �1, c4 ¼ 3o2
a, c3 ¼ k2

þ 2o2
a � 4ko2

a � k2
c , c2 ¼ k2o2

a þ 2o4
a � 4ko2

a � k2
co

2
a, c1 ¼ 3o4

a and
c0 ¼ �o6

a.
Eq. (23) may have multiple roots. However, only the positive real roots o ¼ om that correspond to the

positive optimum values of the time-delay T ¼ Tm qualify, where Tm is computed from Eq. (20) as

Tm ¼
1

om

cos�1ff ðomÞg, (24)

In case of multiple qualifying roots, the optimum value is what corresponds to the maximum value of p as
computed from Eq. (19).

Fig. 9c depicts the optimum robustness curve (inside the region of stability) on which the positive
perturbation bound is the maximum.

Case II: The stability region near T ¼ p for higher values of rm.
As mentioned earlier, this particular zone of stability exists for a tuned absorber with a higher value of the

mass ratio. The variations of the perturbation bound with the time-delay within this particular zone of
stability are depicted in Fig. 10a for different values of the gain. The optimum robustness curve in the gain vs.
delay plane is computed as before and delineated in Fig. 10b.

4.2. Robustness with high-frequency absorbers

The stability zones for high-frequency absorbers stretch out in the positive gain and smaller delay region
around T ¼ p/2. The variations of the positive and the negative perturbation bounds with the time-delay for
different values of the control gain within this specific stability boundary are plotted in Fig. 11a and b. The
observations made from Fig. 11a and b are in order.
1.
 The positive perturbation bound increases with the increasing value of the control gain.

2.
 An optimum value of the time-delay exists that maximizes the positive perturbation bound on ce.

3.
 The negative perturbation bound rapidly increases in magnitude with the increasing value of the time-delay.

4.
 The negative perturbation bound is larger in magnitude than the positive perturbation bound, particularly

near the optimum value of the time-delay.

Fig. 11c depicts the optimum robustness curve corresponding to the maximum value of the positive
perturbation bound on ce.

The variations of the perturbation bounds with the control gain for different values of the mass ratio are
shown in Fig. 12a and b. It is evident that with the absorber frequency fixed at the specific value, a higher



ARTICLE IN PRESS

Fig. 10. (a) Variations of positive perturbation bound with T for tuned absorber for different gains, ce ¼ 0.1, oa ¼ 1, rm ¼ 0.75 and

(b) optimum robustness curve, ce ¼ 0.1, oa ¼ 1, rm ¼ 0.75.

Fig. 11. (a) and (b) Variations of positive and negative perturbation bounds on ce with the time-delay for different values of the control

gain, o2
a ¼ 10, rm ¼ 0.1, ce ¼ 0.1 and (c) optimum robustness curve, o2

a ¼ 10:0, rm ¼ 0.1, ce ¼ 0.1.
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robustness is achieved for a lower mass ratio. Fig. 12c and d show the variations of the perturbation bounds
with the time-delay for different absorber frequencies. Clearly higher robustness is achieved with lower
absorber frequency. However, the absorber natural frequency can be decreased only up to a limit from the
nominal value because the optimum value gradually shifts towards the stability boundary. Selecting parameter
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Fig. 12. Variations of the perturbation bounds with delay: (a) and (b) for different rm, o2
a ¼ 10:0, kc ¼ 2, ce ¼ 0.1; (c) and (d) for different

oa. kc ¼ 2, ce ¼ 0.1, rm ¼ 0.1.
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values on or near the stability boundary is not advisable as the system may be pushed into the unstable zone
under a slight parametric perturbation. The above results clearly suggest that a relatively compliant absorber
is better.

Fig. 12a–d clearly indicate that with the absorber frequency close to
ffiffiffiffiffi
10
p

, the optimum value of the time-
delay for the maximum robustness is approximately around p/2.

5. Degree of stability

The degree of stability is quantified as the minimum absolute value of the real part of the poles of a stable
system. An useful approach to compute the region having a particular degree of stability or higher inside the
stable region is to shift the s-plane axis by a constant positive quantity say s, such that

s ¼ s1 � s. (25)

Substituting the above in Eq. (10), yields the following quasi-polynomial in the new variable s1:

P1ðs1Þ þQ1ðs1Þe
�s1T ¼ 0, (26)



ARTICLE IN PRESS

Fig. 13. Iso-s lines: (a) for the tuned absorber, ce ¼ 0.1, rm ¼ 0.1, oa ¼ 1; (b) for the tuned absorber, ce ¼ 0.1, rm ¼ 0.75, oa ¼ 1; and

(c) for the high-frequency absorber, ce ¼ 0.1, rm ¼ 0.1, oa ¼ 101/2.
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where

P1ðs1Þ ¼ s41 þ a3s
3
1 þ a2s

2
1 þ a1s1 þ a0,

with

a3 ¼ �4s� ce; a2 ¼ 1þ 3cesþ 6s2 þ o2
a þ rmo2

a � kc,

a1 ¼ 2kcs� ðce þ 2sþ 2rmsÞo2
a � 2s� 3ces2 � 4s3,

a0 ¼ o2
að1þ s2 þ rms2 þ cesÞ þ ces3 þ s2ð1� kcÞ þ s4,

and

Q1ðs1Þ ¼ esT ðkcs21 � 2kcss1 þ kcs2Þ.

Now using the same procedure as described in Section 3.2, the stability boundary is obtained from Eq. (26).
This stability boundary represents a contour line having the degree of stability s, i.e. by selecting the
parameters on this contour will ensure that the real part of the pole closest to the imaginary axis is �s. The
degree of stability is higher than s for any value of the control parameters inside the s-contour. Several such
iso-s lines can be plotted inside the stable region of operation. Iso-s lines for the tuned and the high-frequency
absorbers are shown in Fig. 13a–c. From these figures, it is evident that the high-frequency absorber produces
higher degree of stability than that produced by the tuned absorber. However beyond a particular value of the
absorber frequency, the maximum degree of stability again decreases with the increasing value of the absorber
frequency (results are not shown). The degree of stability of the tuned absorber generally decreases with the
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increasing mass ratio within a lower range of values for which the stability boundary is located near T ¼ 2p.
However, the degree of stability of the tuned absorber can be significantly improved by increasing the mass
ratio to a high value that changes the location of the stability boundary towards T ¼ p. However, this is not
true with the high-frequency absorber. The degree of stability generally decreases with the increasing value of
the mass ratio.

6. Numerical simulations

The stability analysis discussed in Section 3 considers only the local stability of the equilibrium. Therefore
for the parameter values selcted inside the stable region of operation, the equilibrium is reached only from a
specific region in the phase–space (the basin of attraction of the equilibrium). This means that the locally
stable equilibrium may coexist with a stable limit cycle oscillation. However, global stability is also essential
for a successful control system designed for suppressing the friction-induced oscillation because only in a
globally stable system, the motions, starting from any arbitrary initial condition, settle down to the
equilibrium. As expected, the local stability analysis does not provide any information about the global
stability of the equilibrium. In order to establish the global stabiltiy of the proposed system, direct numerial
simulations of a MATLAB SIMULINK model of the system are employed. The parameter values used in the
numerical simulations are: friction model parameters: m ¼ 0.2, Dm ¼ 0.2, a ¼ 1.0, c ¼ 0.0 and non-
dimensional belt velocity v0 ¼ 0.15 (these parameter values correspond to ce ¼ 0.1721).

6.1. Numerical simulations with tuned absorber

The parameter values of the tuned absorber used for numerial simulations are oa ¼ 1 and rm ¼ 0.1. In order
to maintain a good robustness as well as a high degree of stability, the control parameters are chosen as
kc ¼ 0.2 and T ¼ 6.0. The phase–plane plots of the trajectories of the controlled system starting from different
initial conditions are depicted in Fig. 14. The converging trajectories to the equilibrium from different initial
Fig. 14. Trajectories of the controlled system in the phase plane from different initial conditions: T ¼ 6.0 and kc ¼ �0.2. + denotes the

initial point.
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Fig. 15. Time history plots with tuned absorber: T ¼ 6 and kc ¼ �0.2. These plots are generated for trivial initial conditions.
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conditions clearly demonstrate the global stability of the proposed control system. The time history plots
of the displacement of the primary mass, the absorber deformation, and the control force are presented in
Fig. 15.

However, for the control parameters chosen very close to the stability boundary, the stable equilibrium
often coexists with a limit cycle oscillation. Overall, it may be concluded that the equilibrium is globally stable
for the control parameters chosen from a region around the maximum robustness curve and the contour line
with a high value of s.

The results of the numerical simulation of the system with the tuned absorber having a high mass ratio are
not presented here. However, the results validate the earlier conclusions that the degree of stability of the
tuned absorber improves by using a high mass ratio that relocates the stability region around T ¼ p.

6.2. Numerical simulations with high-frequency absorber

The foregoing analysis shows that for the high-frequency absorber, the stability region is around T ¼ p/2
and higher positive control gain. The parameter values used for the high-frequency absorber are oa ¼ O10
and rm ¼ 0.1. In order to maintain a good robustness as well as a high degree of stability, the control
parameters are chosen as kc ¼ 2.5 and T ¼ p/2. The phase–plane plots of the trajectories of the controlled
system starting from different initial conditions are depicted in Fig. 16. The converging trajectories to the
equilibrium from different initial conditions clearly demonstrate the global stability of the proposed control
system. Time history plots of the displacement of the primary mass, the absorber deformation, and the
control force are presented in Fig. 17. Comparing Figs. 15 and 17, it is apparent that the vibration staring
from the same initial conditions settles faster to the equilibrium in case of the high-frequency absorber.
Evidently, the maximum deformation of the high-frequency absorber is less than that of the tuned absorber.
However, the maximum control force is higher in case of the high-frequency absorber.

Other than the globally stable motions as shown in Figs. 16 and 17, there exist other types of motions for the
parameter values chosen at different points inside/outside the local stability region. Results of the detailed
numerical simulations are available in [26]. The numerical simulations are carried out at thirteen different
points in the parameter plane as shown in Fig. 18. The summary of these different types of motions observed
during numerical simulations are tabulated in Table 1. From the analysis and the results of the numerical
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Fig. 16. Trajectories of the controlled system in the phase plane from different initial conditions: T ¼ p/2 and kc ¼ 2.5. + denotes the

initial point.

Fig. 17. Time history plots with high-frequency absorber. T ¼ p/2 and kc ¼ 2.5. These plots are generated for trivial initial conditions.
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Fig. 18. Points on the stability plot where numerical simulations are carried out: c ¼ 0, o2
a ¼ 10, rm ¼ 0.1, m ¼ 0.2, Dm ¼ 0.2, and a ¼ 1.

The effective damping corresponding to the friction parameters considered is ce ¼ 0.1721.
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simulations, it may be conjectured that the global stability is achieved when the control parameters are chosen
deep inside the stability region and away from the boundary. The best results are obtained when the parameter
values are chosen around the maximum robustness curve and the s-contour lines with a high value of s.
However, the existence of unbounded motions near the stability boundary (towards the lower threshold of the
time-delay) may create a bit of practical difficulty in implementing the high-frequency absorber, because the
result may be catastrophic in case of the failure of the control. Using a bounded control input can possibly
circumvent this problem. This may be addressed in a future work.

7. Conclusions

The paper presents a theoretical study on the use of time-delayed active absorber for controlling friction-
induced vibration. A single degree-of-freedom mechanical oscillator vibrating on a belt moving with a
constant velocity represents the primary system. The velocity-weakening characteristic of the friction force is
considered to be the major source of the self-excitation. The absorber consists of a spring-mass system with
one end of the spring attached to the primary mass and the other end to the absorber mass. The actuator is
placed in-between the primary and the absorber mass. The time-delayed difference of the displacement of the
primary mass is used as the feedback to control the actuator. A system of delay differential equations
mathematically describes the two degrees-of-freedom model of the control system.

Mainly two types of absorbers, with different natural frequencies, are considered. In one type, the absorber
natural frequency is the same as that of the primary system (here unity); this is termed as the tuned absorber.
Another type has the natural frequency larger (here 101/2) than the natural frequency of the primary system
and this is termed as the high-frequency absorber. Stability and robustness analysis of the system with the two
types of absorbers are performed. A method of optimizing the robustness of the control is proposed.

From the local stability and robustness analysis, the following important conclusions are drawn regarding
the qualitative dynamic behavior of the system:
1.
 The tuned absorber with smaller mass ratio can stabilize the static equilibrium for smaller negative gain and
the time-delay around 2p.
2.
 The tuned absorber with higher mass ratio stabilizes the static equilibrium for positive gain and the time-
delay around p.
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Table 1

Results of numerical simulations with the high-frequency absorber.

Simulation

point

Dynamics with initial condition set-I Dynamics with initial condition set-II Remarks

P1 y1(0) ¼ 0.5, y2(0) ¼ 0.2, v1(0) ¼ 1,

v2(0) ¼ 2: large amplitude vibration of

the absorber mass

y1(0) ¼ 0, y2(0) ¼ 0, v1(0) ¼ 0,

v2(0) ¼ 0: small amplitude vibration

of the absorber mass

Equilibrium unstable

P2 y1(0) ¼ 0, y2(0) ¼ 0, v1(0) ¼ 0,

v2(0) ¼ 0: converging to equilibrium

y1(0) ¼ 0.2, y2(0) ¼ 0.8, v1(0) ¼ 0,

v2(0) ¼ 0: converging to equilibrium

Equilibrium globally stable; slow

convergence from IC set-I

P3 y1(0) ¼ 0, y2(0) ¼ 0, v1(0) ¼ 0,

v2(0) ¼ 0: converging to equilibrium

y1(0) ¼ 0.8, y2(0) ¼ 0, v1(0) ¼ 0,

v2(0) ¼ 0: converging to equilibrium

Equilibrium globally stable; faster

rate of convergence than the previous

point from IC set-I

P4 y1(0) ¼ 0, y2(0) ¼ 0, v1(0) ¼ 0,

v2(0) ¼ 0: converging to equilibrium

y1(0) ¼ 0.8, y2(0) ¼ 0, v1(0) ¼ 0,

v2(0) ¼ 0: converging to equilibrium

Equilibrium globally stable; slower

rate of convergence than the previous

point from IC set-I

P5 y1(0) ¼ 0, y2(0) ¼ 0, v1(0) ¼ 0,

v2(0) ¼ 0: unbounded solution

Equilibrium unstable

P6 y1(0) ¼ 0.2, y2(0) ¼ 0, v1(0) ¼ 0,

v2(0) ¼ 0: unbounded solution

y1(0) ¼ 0, y2(0) ¼ 0, v1(0) ¼ 0,

v2(0) ¼ 0: converging to equilibrium

Equilibrium is locally stable. Global

motion is unbounded implying the

existence of an unstable limit cycle in

the phase space

P7 y1(0) ¼ 0.4, y2(0) ¼ 0, v1(0) ¼ 0,

v2(0) ¼ 0: converging to a limit cycle

oscillation

y1(0) ¼ 0, y2(0) ¼ 0, v1(0) ¼ 0,

v2(0) ¼ 0: converging to equilibrium

Equilibrium is locally stable and

surrounded by a stable limit cycle in

the phase space

P8 y1(0) ¼ 0, y2(0) ¼ 0, v1(0) ¼ 0,

v2(0) ¼ 0: converging to equilibrium

y1(0) ¼ 0.6, y2(0) ¼ 0.8, v1(0) ¼ 2,

v2(0) ¼ 1: converging to equilibrium

Equilibrium globally stable

P9 y1(0) ¼ 0,y2(0) ¼ 0, v1(0) ¼ 0,

v2(0) ¼ 0: converging to equilibrium

y1(0) ¼ 0.6, y2(0) ¼ 0.8, v1(0) ¼ 3,

v2(0) ¼ 1: converging to equilibrium

Equilibrium globally stable

P10 y1(0) ¼ 0, y2(0) ¼ 0, v1(0) ¼ 0,

v2(0) ¼ 0: unbounded motion

Equilibrium unstable

P11 y1(0) ¼ 0.4, y2(0) ¼ 0, v1(0) ¼ 1,

v2(0) ¼ 0: unbounded motion

y1(0) ¼ 0, y2(0) ¼ 0, v1(0) ¼ 0,

v2(0) ¼ 0: converging to equilibrium

Equilibrium is locally stable. Global

motion is unbounded implying the

existence of an unstable limit cycle in

the phase space

P12 y1(0) ¼ 0.4, y2(0) ¼ 0, v1(0) ¼ 0,

v2(0) ¼ 0: converging to equilibrium

y1(0) ¼ 0.4, y2(0) ¼ 0, v1(0) ¼ 0,

v2(0) ¼ 0: unbounded motion

Equilibrium is locally stable. Global

motion is unbounded implying the

existence of an unstable limit cycle in

the phase space

P13 y1(0) ¼ 0.2, y2(0) ¼ 0, v1(0) ¼ 2,

v2(0) ¼ 0: converging to equilibrium

y1(0) ¼ 0.6, y2(0) ¼ 0.8, v1(0) ¼ 2,

v2(0) ¼ 1: converging to equilibrium

Equilibrium globally stable
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3.
 The high frequency absorber stabilizes the equilibrium with relatively lager positive control gain and the
time-delay around p/2.
4.
 Tuned absorber with higher mass ratio offers higher degree of stability and robustness.

5.
 High-frequency absorber with smaller mass ratio gives better degree of stability and robustness.

The effects of the absorber parameters on the stability, robustness and the degree of stability clearly suggest
that the higher degree of stability and robustness is possible if the region of stability is located around T ¼ p/2
or T ¼ p, the first location being more preferable.

Direct numerical simulations are performed for both types of absorbers with the control parameters selected
near the optimum robustness curve and the contour line having high degree of stability. The trajectories are
observed to settle to the static equilibrium irrespective of the initial conditions chosen. This establishes the
global stability of the system with both types of absorbers. Overall, it is observed that the equilibrium is
globally stable with the control parameters chosen near the maximum robustness curve as well as the contour
lines of high degree of stability that are generally located far from the stability boundary. However if the
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control parameters are selected closer to the boundary, other types of motions including limit cycle oscillations
are possible even within the local stability boundary. Detailed numerical simulations reveal that unlike the
system with the tuned absorber, the system with the high frequency absorber shows a rich variety of dynamics
some of which are detrimental to the system. These include high amplitude vibrations of the absorber and even
unbounded motions.

Based on the analyses and numerical simulations, qualitative comparisons between the basic dynamic
characteristics of the two types of absorbers can be made. The tuned absorber is functional for smaller values
of the control gain and larger values of the time-delay and hence is practically more attractive. Moreover, the
absence of high amplitude vibrations and unbounded motions outside the global stability region makes the
situation comfortable for the designer. However, the absorber deformation is on the higher side. On the other
hand, the high-frequency absorber operates on higher values of the control gain and smaller values of the
time-delay. The high-frequency absorber offers relatively higher degree of stability and has lower deformation.
However, the major disadvantage with the high-frequency absorber is that outside the global stability region,
the amplitude of vibration may be higher than that of the uncontrolled system. In some worst cases, the
system motions are unbounded leading to catastrophic failures. Moreover, a high-frequency absorber may
interact with higher modes of vibration of the primary system that are not considered in the present
mathematical model.

The present theoretical study clearly shows the possibility of using an active time-delayed absorber for
controlling any form of self-excited vibration of an elastic structure. The particular control law considered in
the present study is just one possibility out of many. Other possibilities may be time-delayed velocity and
acceleration feedback etc. Future research should concentrate on exploring such other possibilities.
References

[1] R.A. Ibrahim, Friction-induced vibration, chatter, squeal, and chaos, part II: dynamics and modeling, Transactions of ASME,

Applied Mechanics Review 47 (7) (1994) 227–253.

[2] E.J. Berger, Friction modeling for dynamic system simulation, Transactions of ASME, Applied Mechanics Review 55 (6) (2002)

535–577.

[3] B. Armstrong-Hélouvry, P. Dupont, C. Canudas de Wit, A survey of models, analysis tools and compensation methods for the

control of machines with friction, Automatica 30 (7) (1994) 1083–1138.

[4] M.A. Heckl, D. Abrahams, Active control of friction driven oscillations, Journal of Sound and Vibration 193 (1) (1996) 417–426.

[5] K. Popp, M. Rudolph, Vibration control to avoid stick-slip motion, Journal of Vibration and Control 10 (2004) 1585–1600.

[6] J.J. Thomsen, Using fast vibrations to quench friction-induced oscillations, Journal of Sound and Vibration 228 (5) (1999) 1079–1102.

[7] S. Chatterjee, T.K. Singha, S.K. Karmakar, Effect of high-frequency excitation on a class of mechanical systems with dynamic

friction, Journal of Sound and Vibration 269 (2004) 61–89.

[8] S. Chatterjee, Non-linear control of friction-induced self-excited vibration, International Journal of Nonlinear Mechanics 42 (3) (2007)

459–469.

[9] S. Chatterjee, On the design criteria of dynamic vibration absorbers for controlling friction-induced oscillations, Journal of Vibration

and Control 14 (3) (2008) 397–415.

[10] A. Maccari, Vibration control for the primary resonance of a cantilever beam by a time delay state feedback, Journal of Sound and

Vibration 259 (2) (2003) 241–251.

[11] R. Sipahi, N. Olgac, Active vibration suppression with time delayed feedback, Journal of Vibration and Acoustics—Transactions of

ASME 125 (2003) 384–388.

[12] N. Olgac, B.T. Holm-Hansen, A novel active vibration absorption technique: delayed resonator, Journal of Sound and Vibration 176

(1994) 93–104.

[13] J.C. Ji, A.Y.T. Leung, Resonances of a non-linear s.d.o.f. system with two time-delay in linear feedback control, Journal of Sound and

Vibration 253 (5) (2002) 985–1000.

[14] F.M. Atay, Van der Pol’s oscillator under delayed feedback, Journal of Sound and Vibration 218 (2) (1998) 333–339.

[15] F.M. Atay, Delayed feedback control of oscillations in nonlinear planar systems, International Journal of Control 75 (2002) 297–304.

[16] A. Maccari, Vibration control of parametrically excited Lienard system, International Journal of Nonlinear Mechanics 41 (2006)

146–155.

[17] A. Maccari, Vibration control for the primary resonance of a cantilever beam by a time delay state feedback, Journal of Sound and

Vibration 259 (2) (2003) 241–251.

[18] A. Maccari, Vibration control for the primary resonance of the van der Pol oscillator by a time delay state feedback, International

Journal of Nonlinear Mechanics 38 (2003) 123–131.

[19] X. Li, J.C. Ji, C.H. Hansen, C. Tan, Response of a Duffing–Van der Pol oscillator under delayed feedback control, Journal of Sound

and Vibration 291 (2006) 644–655.



ARTICLE IN PRESS
S. Chatterjee, P. Mahata / Journal of Sound and Vibration 322 (2009) 39–59 59
[20] F.-J. Elmer, Controlling friction, Physical Review E 57 (1998) 4903–4906.

[21] K. Pyragas, Physics Letters A 170 (1992) 421–424.

[22] J. Das, A.K. Mallik, Control of friction driven oscillation by time-delayed state feedback, Journal of Sound and Vibration 297 (3–5)

(2006) 578–594.

[23] S. Chatterjee, Time-delayed feedback control of friction-induced instability, International Journal of Nonlinear Mechanics 42 (2007)

1127–1143.

[24] N. Hinrichs, M. Oestreich, K. Popp, On the modeling of friction oscillators, Journal of Sound and Vibration 216 (3) (1998) 435–459.

[25] R. Horvath, Experimental Investigation of Excited and Self-excited Vibration, Master’s Thesis, University of Technology and

Economics, Budapest, 2000 /http://www.auburn.edu/�horvaro/index2.htmS.

[26] P. Mahata, Controlling Friction-induced Self-excited Oscillation by Time-delayed Feedback, M.E. Thesis, Department of Mechanical

Engineering, Bengal Engineering and Science University, Shibpur, 2008.

http://www.auburn.edu/~horvaro/index2.htm
http://www.auburn.edu/~horvaro/index2.htm

	Time-delayed absorber for controlling friction-driven vibration
	Introduction
	Mathematical model
	Local stability of the static equilibrium
	Linearization around the equilibrium
	Stability analysis
	Stability with tuned absorber
	Stability with high-frequency absorber


	Robustness analysis
	Robustness with tuned absorbers
	Robustness with high-frequency absorbers

	Degree of stability
	Numerical simulations
	Numerical simulations with tuned absorber
	Numerical simulations with high-frequency absorber

	Conclusions
	References


